

Figure 11. Relative electron affinities. Substituted cyanobenzenes vs. substituted nitrobenzenes.

with decreasing SOMO ring density than the field effect.

A comparison between the effect of a larger variety of substituents X in positions 2, 3, and 4 on the electron affinities of cyanobenzene and nitrobenzene is given in Figure 11. substituents which have a strong field effect and small resonance effect (CF₃, 3,5-(CF₃)₂, 2-CN, 3-CN, 4-CN) fall close to the unit slope line, i.e., for these substituents the reduced SOMO density of the nitrobenzene ring, relative to the cyanobenzene ring, is of no great consequence. The strongly π withdrawing substituents

CHO and NO₂, on the other hand, are displaced to the right, i.e., for the NO_2 -C₆H₄-X these substituents produce a smaller electron affinity increase relative to the $CN-C_6H_4X$. These trends are in agreement with Figure 10 and attendant discussion. Interestingly, a significant displacement is observed also for the CHO and particularly NO_2 in position 3. A plot like that in Figure 11 is somewhat misleading. For example, considering the NO_2 substituent effect on $C_6H_5CN^-$, it is obvious that the NO_2 introduction leads to a large shift of SOMO density to NO₂ which is the more powerful substituent. This will happen also when NO₂ is introduced in position 3. On the other hand, when NO_2 is introduced in position 3 of $C_5H_5NO_2^-$, the SOMO density shift to it will be considerably smaller since that substituent does not overpower the equally strong initial NO_2 . In other words a large decrease between the electron affinities of 4-dinitrobenzene and 3-dinitrobenzene is expected while for the pair 4-nitrocyanobenzene and 3-nitrocyanobenzene the decrease should be small, and these expected changes are observed in Figure 11.

Acknowledgment. This work was supported by the Canadian Natural Science and Engineering Research Council.

Registry No. 2,3-(CH₃)₂NB, 83-41-0; 4-CF₃BN, 455-18-5; 3-FNB, 402-67-5; F₄BQ, 527-21-9; 4-CNNB, 619-72-7; 3-CNNB, 619-24-9; 2-CNNB, 612-24-8; 4-CH₃NB, 99-99-0; 2-NO₂NB, 528-29-0; NB, 98-95-3; 2-CH₃NB, 88-72-2; tetracyanoethylene, 670-54-2; trans-1,2-dicyanoethylene, 764-42-1; 4-formylbenzonitrile, 105-07-7; 4-acetylbenzonitrile, 1443-80-7; 4-cyanobenzonitrile, 623-26-7; 3,5-dimethylbenzonitrile, 22445-42-7; 2-cyanobenzonitrile, 91-15-6; 3-formylbenzonitrile, 24964-64-5; 3-cyanobenzonitrile, 626-17-5; 4-methylbenzonitrile, 104-85-8; 2,6-dichlorobenzonitrile, 1194-65-6; 2-methylbenzonitrile, 529-19-1; 1-naphthonitrile, 86-53-3; 3-(trifluoromethyl)benzonitrile, 368-77-4; 2-naphthonitrile, 613-46-7.

Kinetics of Reaction of Dodecacarbonyltriosmium with Diphenylacetylene

Anthony J. Poë,* Clifford N. Sampson, and Richard T. Smith

Contribution from the Department of Chemistry and Erindale College, University of Toronto, Mississauga, Ontario, Canada L5L 1C6. Received April 24, 1985

Abstract: The kinetics of reaction of $Os_3(CO)_{12}$ with C_2Ph_2 in decalin or tetradecane between 160 and 195 °C, and under various partial pressures of CO, have been studied. Loss of $Os_3(CO)_{12}$ occurs by two main paths. One involves a very unusual bimolecular reaction between C_2Ph_2 and the cluster ($k = 5.4 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$ at 170 °C; $\Delta H^* = 37.3 \pm 5.0 \text{ kcal mol}^{-1}$; ΔS^* = 9.7 ± 11.5 cal K⁻¹ mol⁻¹). The other involves a labile preequilibrium between Os₃(CO)₁₂ and Os₃(CO)₁₁(η^2 -C₂Ph₂) (K = 2.5 × 10⁻³ at 170 °C; ΔH° = 9.4 ± 2.9 kcal mol⁻¹; ΔS° = 9.2 ± 6.7 cal K⁻¹ mol⁻¹) followed by slow dissociative loss of CO $(k = 4.5 \times 10^{-4} \text{ s}^{-1} \text{ at } 170.0 \text{ °C}; \Delta H^{*} = 32.4 \pm 1.8 \text{ kcal mol}^{-1}; \Delta S^{*} = -1.6 \pm 4.3 \text{ cal } K^{-1} \text{ mol}^{-1}).$ It is proposed that this dissociative loss of CO is accompanied by a concerted change of the η^2 -C₂Ph₂ to μ -C₂Ph₂ with formation of Os₃(CO)₁₀(μ -C₂Ph₂). Os₃(CO)₁₀(μ -C₂Ph₂) reacts readily with C₂Ph₂ between 80 and 95 °C in decalin to give Os₃(CO)₉(μ -C₄Ph₄) by a simple CO dissociative mechanism ($k = 6.2 \times 10^{-4} \text{ s}^{-1}$ at 85 °C; $\Delta H^* = 28.0 \pm 1.8 \text{ kcal mol}^{-1}$; $\Delta S^* = 4.6 \pm 5.1 \text{ cal } K^{-1} \text{ mol}^{-1}$). Os₃(CO)₉(μ -C₄Ph₄) fragments to form Os₂(CO)₆(C₄Ph₄) and Os(CO)₅ between 50 and 70 °C at rates proportional to [CO] $(k = 0.41 \text{ M}^{-1} \text{ s}^{-1} \text{ at } 50 \text{ °C}; \Delta H^* = 8.2 \pm 1.3 \text{ keal mol}^{-1}; \Delta S^* = -35.3 \pm 3.9 \text{ cal } K^{-1} \text{ mol}^{-1})$. The bimolecular reaction of C_2Ph_2 with $Os_3(CO)_{12}$ almost certainly leads directly to fragmentation products.

Much attention has been paid in recent years to reactions of unsaturated organic molecules with metal carbonyl clusters.¹ This has been motivated by an interest in the wide variety of bonding modes possible between such molecules and small clusters of metal atoms^{1,2} and by a desire to explore the possible uses of cluster

compounds as homogeneous or supported catalysts.^{2,3} Knowledge of the mechanisms of these reactions⁴ has not accumulated as rapidly as that of the structural nature of the products, and kinetic

0002-7863/86/1508-5459\$01.50/0 © 1986 American Chemical Society

E.g.: Organomet. Chem. 1972, 1, et seq.
 (2) (a) Muetterties, E. L. Bull. Soc. Chim. Belg. 1976, 85, 451-470; J. Organomet. Chem. 1980, 200, 177-190; Q. Rev. Chem. Soc. 1982, 11, 283-320.
 (b) Lewis, J.; Johnson, B. F. G. Gazz. Chim. Ital. 1979, 109, 211 220 271-289. (c) Transition Metal Clusters; Johnson, B. F. G., Ed.; Wiley: Chichester, 1980.

^{(3) (}a) Whyman, R. Chapter 8 in ref 2c. (b) Bailey, D. C.; Langer, S. H. Chem. Rev. 1981, 81, 109-148.

⁽⁴⁾ Inorg. React. Mech. 1971-1981, 1-7. Inorganic and Organometallic Reaction Mechanisms; Twigg, M. V., Ed.; Plenum: New York, 1983, Vol. 1; 1984, Vol 2; 1985, Vol. 3. (5) Tachikawa, M. T.; Shapley, J. R.; Pierpont, C. G. J. Am. Chem. Soc.

^{1975, 97, 7172-7174}

⁽⁶⁾ Ferraris, G.; Gervasio, G. J. Chem. Soc., Dalton Trans. 1974, 1813-1817.

Table I. C-O Stretching Frequencies of Some Relevant Complexes in Decalin

$Os_3(CO)_{11}(C_2H_4)^a$	2117 (w)	2064 (s)	2048 (s)	2027 (vs)	2010 (m)	2004 (s)	1995 (m)	1984 (w)	1969 (w)
$Os_3(CO)_{11}(C_2Ph_2)$	2113 (w)	2074 (s)	2063 (s)	2044 (m)	2034 (vs)	2020 (m)	1999 (s)	1984 (m)	1967 (w)
$Os_3(CO)_{10}(C_2Ph_2)^b$	2100 (w)	2066 (vs)	2046 (s)	2028 (s)	2009 (s)	1996 (m)	1985 (w)		
$Os_3(CO)_9(C_4Ph_4)^c$	2113 (m)	2057 (vs)	2042 (s)	2011 (s)	1998 (m)	1988 (w)	1973 (w)	1929 (m)	
$Os_3(CO)_8(C_4Ph_4)^c$	2094 (m)	2057 (s)	2033 (vs)	2018 (m)	2012 (m)	1998 (7)	1973 (m)		
$Os_2(CO)_6(C_4Ph_4)^c$	2081 (s)	2051 (vs)	2015 (m)	1998 (s)	1972 (m)				

^aReference 9. ^bReference 5. ^cReference 7.

studies that are essential in acquiring such knowledge are rare. Apart from mechanistic knowledge itself, quantification of reaction rates under a wide variety of conditions is basic to developing the precise understanding of reactivity necessary for rational catalyst design. We have undertaken kinetic studies of a few such reactions and report here on a sequence beginning with the reaction of diphenylacetylene with $Os_3(CO)_{12}$ and proceeding through the known complexes $Os_3(CO)_{10}(\mu$ -C₂Ph₂), I,⁴ and $Os_3(CO)_9(\mu$ -C₄Ph₄), II,^{5,6} to $Os_2(CO)_6(\mu$ -C₄Ph₄), III.^{7,8}

Experimental Section

 $Os_3(CO)_{12}$ (Strem Chemicals) and C_2Ph_2 (Aldrich) were used as received. Decalin and tetradecane (Aldrich) were washed successively with 4 M H₂SO₄ and water, dried over MgSO₄, and distilled several times under reduced pressure to ensure the absence of any unsaturated impurities. They were stored over molecular sieves (Linde Type 4A). CO, N₂, and CO-N₂ mixtures of known composition were obtained from Matheson Canada Ltd. or Canox Ltd.

 $Os_3(CO)_{10}(NCMe)_2$ was prepared by reaction of 2 equiv of freshly sublimed Me₃NO with $Os_3(CO)_{12}$ in dry acetonitrile at 60 °C under N₂ for a few minutes. Solvent was removed under vacuum, and small amounts of impurities were removed by washing the solid products with cold MeCN until they were spectroscopically pure.⁹ $Os_3(CO)_{11}(NCMe)$ and $Os_3(CO)_{11}(C_2H_4)$ were prepared by the method of Johnson et al.⁹

The new complex $Os_3(CO)_{11}(C_2Ph_2)$ was prepared by reacting 1 equiv of C_2Ph_2 with $Os_3(CO)_{11}(C_2H_4)$ in dry cyclohexane at ca. 40 °C for a few minutes, the C_2H_4 being removed by bubbling with Ar. Removal of solvent gave a solid product with an IR spectrum very close to that of $Os_3(CO)_{11}(C_2H_4)^9$ (Table I). The mass spectrum showed fragments corresponding to $(M - CO)^+$ and $(M - C_2Ph_2)^+$, although no parent ion was observed. Brief exposure to CO in solution regenerates pure $Os_3^ (CO)_{12}$, and in the absence of CO, the complex converts very slowly to the known $Os_3(CO)_{10}(C_2Ph_2)$. All attempts to grow crystals suitable for X-ray analysis were unsuccessful. Elemental analysis always resulted in rather high results for C even when there was no evidence for any unreacted C_2Ph_2 or unremoved solvent. However, the mass spectroscopic and IR data, the reactions of the complex, and the reactions by which

it was formed leave little doubt of its formulation as $Os_3(CO)_{11}(C_2Ph_2)$. $Os_3(CO)_{10}(C_2Ph_2)$ was prepared in situ by reaction of $Os_3(CO)_{10}^{-1}$. (NCMe)₂ in decalin with a known excess of C_2Ph_2 at room temperature.¹⁰ The reaction was complete in ca. 1.5 h as evidenced by the IR spectrum (Table I) which is in excellent agreement with published values.

 $Os_3(CO)_9(C_4Ph_4)$ was prepared, also in situ, by further reaction of $Os_3(CO)_{10}(C_2Ph_2)$ with $C_2Ph_2^5$ for 12 h at 55 °C. This produced approximately equal amounts of $Os_3(CO)_9(C_4Ph_4)$ and $Os_3(CO)_8(C_4Ph_4)^7$ (Table I). The solutions were then cooled to room temperature and treated with CO for about 10 min when all the $Os_3(CO)_8(C_4Ph_4)$ reacted to form $Os_3(CO)_9(C_4Ph_4)$.

Kinetic Procedures. Kinetic runs were carried out on solutions prepared in Schlenk tubes fitted with rubber septum caps, shielded from room light, and thermostated to ± 0.2 °C by immersion in an oil bath (Lauda Model NS-20). All solutions were purged with a stream of N₂ and then saturated, if required, with CO or CO-N₂ mixtures of known composition. Samples were withdrawn periodically by syringe under a slight pressure of gas, and the reaction was quenched by cooling to room temperature. IR spectra of the samples were recorded on a Perkin-Elmer 180 or 337 spectrophotometer. Initial concentrations of reacting complex were generally ca. $2.5-5 \times 10^{-4}$ M.

Reactions were followed by monitoring changes in the IR spectra of bands distinct from those of any products. Values of A_{∞} were therefore small and plots of ln $(A_t - A_{\infty})$ vs. time were linear for at least two half-lives.

Concentrations of CO in decalin were estimated by extrapolation of the solubilities measured¹¹ between 20 and 75 °C. Values under 1 atm of CO were obtained by extrapolation of plots of $\ln [CO]_{1 \text{ atm}}$ vs. 1/T, and the vapor pressures of decalin were estimated, when necessary, by extrapolation of values published¹² for temperatures up to 160 °C. The values of [CO] under a 1-atm pressure of mixtures of CO, N₂, and decalin vapor could then be estimated by assuming Henry's law to hold.

Results and Discussion

The kinetic results obtained for reactions of $Os_3(CO)_{12}$, $Os_3(CO)_{10}(\mu-C_2Ph_2)$, and $Os_3(CO)_9(\mu-C_4Ph_4)$ can all be understood in terms of Scheme I.

⁽⁷⁾ Gambino, O.; Vaglio, G. A.; Ferrari, R. P.; Cetini, G. J. Organomet. Chem. 1971, 30, 381-386.

⁽⁸⁾ Dodge, R. P.; Mills, O. S.; Shoemaker, V. Proc. Chem. Soc. 1963, 380-381.

⁽⁹⁾ Johnson, B. F. G.; Lewis, J.; Pippard, D. A. J. Chem. Soc., Dalton Trans. 1981, 407-412.

⁽¹⁰⁾ Tachikawa, M. T.; Shapley, J. R. J. Organomet. Chem. 1977, 124, C19-22.

⁽¹¹⁾ Basato, M.; Fawcett, J. P.; Poë, A. J. J. Chem. Soc., Dalton Trans. 1974, 1350-1356.

⁽¹²⁾ Handbook of Chemistry and Physics; Weast, R. C., Ed.; The Chemical Rubber Co.: Cleveland, OH, 1975.

Table II. Derived Rate Parameters^a for Reaction of $Os_3(CO)_{12}$ with C_2Ph_2 in Decalin

		•				
<i>T</i> , °C	no. of measurements	<i>a</i> , s	$10^{-3}b$, s	$10^6 k_{\rm Al}, {\rm s}^{-1}$	$10^4 k_{A2}, M^{-1} s^{-1}$	$\sigma(k_{\rm obsd}), ^b \%$
160.0	8	5510 ± 163	2976 ± 147	5.77 ± 0.67	1.86 ± 0.08	4.4
165.0	8	3191 ± 73	1414 ± 83	9.95 ± 2.27	2.66 ± 0.26	8.8
170.0	22	2174 ± 46	863 ± 46	6.98 ± 1.06	5.54 ± 0.26	8.5
175.0	7	1454 ± 32	612 ± 58	8.87 ± 0.45	7.13 ± 0.06	9.4
	$\Delta H_{A2}^* =$	37.3 ± 5.0 kcal mol ⁻¹		$\Delta S_{A2}^* = 9.7 \pm 11.5$	cal K ⁻¹ mol ⁻¹	

^a a, b, k_{A} , and k_{A2} are defined in eq 1 and 2. ^b Probable error (standard deviation) of an individual value of k_{obsd} (see text).

Figure 1. Dependence of $1/k_{obsd}$ on $[CO]/[C_2Ph_2]$ for reaction of Os₃-(CO)₁₂ with C₂Ph₂ at 170 °C. (•) $10^3[CO] = 0.081$ M, $[C_2Ph_2] = 0.0047-0.081$ M; (•) $10^3[CO] = 1.62$ M, $[C_2Ph_2] = 0.04-0.25$ M; (•) $10^{3}[CO] = 0.081 - 1.62 \text{ M}, [C_{2}Ph_{2}] = 0.064 \text{ M}.$

Reactions of Os₃(CO)₁₂. Reactions of Os₃(CO)₁₂ with C₂Ph₂, in decalin at 160–175 °C, proceed under Ar to form Os₃-(CO)₉(μ -C₄Ph₄),⁶ Os₃(CO)₈(μ -C₄Ph₄),¹³ and hexaphenylbenzene.¹⁴ Rates were strongly affected by CO and reactions were monitored by following the decreasing intensity of the band at 2066 cm⁻¹, due to $Os_3(CO)_{12}$, under known partial pressures of CO. Under these conditions $Os_3(CO)_8(\mu-C_4Ph_4)$ is not formed and Os_3 - $(CO)_9(\mu-C_4Ph_4)$ reacts to form $Os_2(CO)_6(\mu-C_4Ph_4)$. Decreasing amounts of C₆Ph₆ are formed as [CO] is increased.

The values of k_{obsd} for reaction under 5% CO at 170 °C increase with $[C_2Ph_2]$ but appear to approach a limiting value. An excellent linear plot of $1/k_{obsd}$ against [CO]/[C₂Ph₂] is obtained (Figure 1) as expected for a simple dissociative reaction. However, although a good linear plot of $1/k_{obsd}$ against [CO]/[C₂Ph₂] is also obtained for reactions under 100% CO, the line does not coincide with that from data under 5% CO as should be the case for the simple dissociative mechanism. Further, a third straight line is obtained (Figure 1) for data when reactions were carried out under various partial pressures of CO with constant [C₂Ph₂]. A clue to the resolution of this complex behavior is provided in Figure 2 which shows that k_{obsd} appears to decrease with [CO] toward a lower limiting value, independent of [CO]. This is supported by the observation of quite substantial residual reaction under 100% CO in tetradecane. Tetradecane has a much lower vapor pressure¹² at 170 °C than decalin, and the solubility of CO is consequently higher. An additional factor is the generally greater solubility of CO in straight-chain aliphatic solvents,^{11,15} and we estimate [CO] to be ca. 6×10^{-3} M in tetradecane at 170 °C as compared to 1.6×10^{-3} M in decalin. The rate constant under

Figure 2. Dependence of k_{obsd} on [CO] for reaction of Os₃(CO)₁₂ with C₂Ph₂ at 170 °C in decalin. [C₂Ph₂] = 0.064 M. The horizontal line defines the value of k_{obsd} for reaction with 0.064 M C₂Ph₂ in tetradecane and [CO] = ca. 6×10^{-3} M.

CO in tetradecane at 170 °C, shown by the horizontal line in Figure 2, corresponds to a reasonable lower limit for the k_{obsd} vs. [CO] data. At 190 °C the rate constants for reaction in tetradecane increase linearly with [C₂Ph₂], and these results all suggest that there is a [CO]-independent, but $[C_2Ph_2]$ -dependent, path (path A) as well as another (path B) that follows kinetics characteristic of a CO dissociative mechanism.

The contribution of path A to reaction in decalin can be estimated quite precisely on the basis of the rate equations shown in eq 1a and 1b, eq 1b corresponding to the CO dissociative mechanism. The contribution of path A to the overall rate is

$$k_{\rm obsd} = k_{\rm A} + k_{\rm B} \tag{1a}$$

$$1/k_{\rm B} = a + b[{\rm CO}]/[{\rm C_2Ph_2}]$$
 (1b)

obviously smallest for reactions under 5% CO, and we can take $k_{obsd}(5\%)$ as an approximate measure of k_{B} . Preliminary values of a and b found from the intercept and gradient of the linear plot of $1/k_{obsd}(5\%)$ against [CO]/[C₂Ph₂] in Figure 1 can then be used to estimate values of $k_{\rm B}(100\%)$ for the various values of [CO]/ $[C_2Ph_2]$ used for reactions under 100% CO. These are all substantially less than the corresponding values of $k_{obsd}(100\%)$ and the difference provides initial values of $k_{\rm A}$. These are found to depend on $[C_2Ph_2]$ (eq 2 and Figure 3) in the same way as the values of k_{obsd} for reaction in tetradecane under CO at 190 °C.

$$k_{\rm A} = k_{\rm A1} + k_{\rm A2} [\rm C_2 Ph_2]$$
 (2)

The initial estimates of k_{A1} and k_{A2} are then used to provide better estimates of $k_B(5\%)$ from $k_{obsd}(5\%)$ and thence better estimates of a and b. These can be used to provide new values of $k_{\rm B}(100\%)$, k_{A1} , and k_{A2} . This iteration was continued until the values of a, b, k_{A1} , and k_{A2} became constant. The final values of these parameters and their standard deviations¹⁶ are given in Table II

⁽¹³⁾ Ferraris, G.; Gervasio, G. J. Chem. Soc., Dalton Trans. 1972, 1057-1061.

⁽¹⁴⁾ Characterized by its IR spectrum and melting point.
(15) Bor, G.; Dietler, U. K.; Pino, P.; Poë, A. J. J. Organomet. Chem.
1978, 154, 301-315. Note especially the footnote on p 308.

Figure 3. Dependence of k on $[C_2Ph_2]$ for reaction of Os₃(CO)₁₂ with C_2Ph_2 . (•) $k = k_A = k_{obsd} - k_B$ for reaction in decalin. (•) $k = 0.2k_{obsd}$ for reaction in tetradecane under CO.

Figure 4. Dependence of $1/(k_{obsd} - k_A)$ on $[CO]/[C_2Ph_2]$ for reaction of Os₃(CO)₁₂ with C₂Ph₂ at 170 °C. The different data points are as defined for Figure 1.

together with those obtained in an identical way from data at other temperatures. Values of $1/k_{\rm B}$ at 170 °C, estimated from $k_{\rm obsd}$ $-k_{\rm A} = k_{\rm B}$, are plotted against [CO]/[C₂Ph₂] in Figure 4, showing that the complexity of Figure 1 has been completely resolved. The parameters in Table II enable expected values, k_{calcd} , to be estimated for the various values of [CO]/[C2Ph2] at a given temperature, and from these, we calculate $\sigma(k_{obsd}) = 100 \{\sum \Delta^2 / (N - 4)\}^{1/2}$, where $\Delta = (k_{obsd} - k_{calcd})/k_{calcd}$. Values of $\sigma(k_{obsd})$ are given in Table II and show that the data are in excellent quantitative agreement with rate equations (1a), (1b), and (2) over a very wide range of conditions.

Although eq 1b is characteristic of a simple CO dissociative mechanism, with CO and C_2Ph_2 competing for $Os_3(CO)_{11}$, this

Table III. Kinetic Parameters for Reaction via Path B

<i>T</i> , °C	$10^{3}K_{3}$	$10^4 k_4$, s ⁻¹
 160.0	1.85 ± 0.17	1.82 ± 0.09
165.0	2.26 ± 0.14	3.13 ± 0.07
170.0	2.53 ± 0.15	4.53 ± 0.07
175.0	2.38 ± 0.38	6.88 ± 0.27
Δ	$H_3^{\circ} = 9.4 \pm 2.9$ kcal	mol ⁻¹
Δ	$S_3^\circ = 9.2 \pm 6.7$ cal K	⁻¹ mol ⁻¹

Table IV. Kinetic Parameters for Loss of CO from Some Os₃ Clusters

cluster	$10^4 k$ (125 °C), s ⁻¹	ΔH^* , kcal mol ⁻¹	ΔS^* , cal K ⁻¹ mol ⁻¹
$Os_3(CO)_{12}^a$	3.5	32.87 ± 0.28	7.6 ± 0.9
$Os_3(CO)_{11}(\eta^2 - C_2Ph_2)^b$	0.08	32.4 ± 1.8	-1.6 ± 4.3
$Os_3(CO)_{10}(\mu - C_2Ph_2)^c$	340	28.04 ± 1.82	4.6 ± 5.1
$Os_3(CO)_{11}(P-n-Bu_3)^a$	2.5	39.3 ± 1.2	23.1 ± 3.1

^a Data from ref 17 and 19. ^bSee reaction 4. Reaction is concerted (see text). 'See reaction 9.

cannot be the mechanism. The rate constant for substitution of PPh₃ into Os₃(CO)₁₂ at 160 °C is $108 \times 10^{-4} \text{ s}^{-1,18}$ irrespective of [PPh₃]. This can be concluded¹⁷ to be the rate constant for CO dissociation and is much greater than the values 1/a = 1.9 \times 10⁻⁴ s⁻¹ (Table II). Reaction of Os₃(CO)₁₁(C₂Ph₂) with CO was also shown to be very fast, and eq 1b is therefore in much better accord with the mechanisms shown in eq 3 and $4,^{20}$ reaction 3 being a labile equilibrium. The corresponding rate equation is shown in eq 5 so that $1/a = k_4$ and $1/b = K_3k_4$.

$$Os_3(CO)_{12} + C_2Ph_2 \xrightarrow{K_3} Os_3(CO)_{11}(\eta^2 - C_2Ph_2) + CO$$
 (3)

$$Os_3(CO)_{11}(\eta^2 - C_2Ph_2) \xrightarrow{\kappa_4} Os_3(CO)_{10}(\mu - C_2Ph_2) + CO \quad (4)$$

$$1/k_a = 1/k_4 + (1/K_3k_4)[CO]/[C_2Ph_2]$$
 (5)

Values of K_3 and k_4 at various temperatures (Table III) lead to estimates of ΔH_3° and ΔS_3° (Table III) and ΔH_4^* and ΔS_4^* (Table IV).²¹ The values of K_3 , ΔH_3° , and ΔS_3° show that the displacement of CO by C_2Ph_2 is energetically unfavorable because of the quite large and positive value of the enthalpy of reaction. This is likely to be a good measure of the different strengths of the Os-CO and Os-(C2Ph2) bonds, a conclusion supported qualitatively by the rapidity with which the C₂Ph₂ is displaceable, even at room temperature. Comparable data on the energetics of bonding of unsaturated hydrocarbons to carbonyl clusters are, unfortunately, not available.

Reaction 4 seems to involve a concerted displacement of CO. The absence of a term in [CO]² in eq 1b and 5 shows that reaction 4 is not retarded by [CO]. Reversible formation of $Os_3CO)_{10}$ - $(\eta^2-C_2Ph_2)$ followed by isomerization to Os₃(CO)₁₀(μ -C₂Ph₂) cannot, therefore, be occurring. The corresponding reaction of $Os_3(CO)_{11}(\eta^2 - 1 - decyne)$ is very much faster,²² yet the nature of the η^2 -alkyne should not have much effect on the rate of CO dissociation from another Os atom in the cluster. On the other hand, the greater steric effect of C₂Ph₂ might well inhibit a concerted displacement of CO and concurrent rearrangement of bonding of the alkyne to the Os₃ cluster. The concerted nature of reaction 4 is also suggested by the negative or, at most, only slightly positive value of ΔS_4^* .

The data in Table IV show that the presence of the C_2Ph_2 substituent in $Os_3(CO)_{11}(\eta - C_2Ph_2)$ deactivates the cluster toward CO loss, compared with $Os_3(CO)_{12}$, by a factor of ca. 40 at 125

⁽¹⁶⁾ In all cases the dependences of k_A on $[C_2Ph_2]$ and of $1/k_B$ on $[CO]/[C_2Ph_2]$ were analyzed by a weighted linear least-squares program in which k_A and k_B were assumed to have characteristic probable errors (standard deviations), $\sigma(k_A)$ and $\sigma(k_B)$, expressed as a percentage. The initial estimates of the standard deviations were always adjusted upward, according to the number of degrees of freedom involved.¹⁷ so that 95% confidence limits on the standard behaviored upward and standard behaviored upward. (17) Poë, A. J.; Sekhar, V. C. Inorg. Chem. 1985, 24, 4376–4380.

⁽¹⁸⁾ Estimated from activation parameters given in ref 17 and 19.
(19) Brodie, N. M. J.; Poë, A. J.; Sekhar, V. C. J. Chem. Soc., Chem.

Commun. 1985, 1090-1091.

⁽²⁰⁾ The reverse of reaction 4 only occurs in the absence of C_2Ph_2 .

⁽²¹⁾ Each value of $\ln K_3$ or $\ln (k_4/T)$ was weighted according to the inverse of its variance, as obtained from the standard deviations of K_3 and k_4 shown in Table III.

⁽²²⁾ Poë, A. J.; Smith, R. T., unpublished observations.

°C. This factor would presumably be larger if the loss of CO from the alkyne complex were not compensated for by the concerted adjustment of the bonding of the C_2Ph_2 . If the value of ΔS^* for the nonassisted loss of CO is the same as that for $Os_3(CO)_{12}$,^{17,19} then the value of ΔH^{\dagger} for the nonassisted loss would have to be \gtrsim 36 kcal mol⁻¹ for this process to be negligible compared with assisted loss. This value is considerably larger than that for $Os_3(CO)_{12}$. This deactivation is similar to that brought about by one P-*n*-Bu₃ substituent^{17,19} (Table IV).

Although metal carbonyl clusters in general,²³ and Os₃(CO)₁₂ in particular,^{17,19} are known to be susceptible to nucleophilic attack by σ -donor ligands, direct attack on a coordinatively saturated complex by an alkyne, as indicated by eq 2, has not been observed before. It is only detected here because of the extreme slowness of the CO-retarded reaction. Bimolecular reaction with P-n-Bu₃ leads directly to fragmentation of the Os₃ cluster,¹⁷ and it is likely that attack by C₂Ph₂ also causes fragmentation. It cannot lead to simple substitution since the $Os_3(CO)_{11}(\eta^2-C_2Ph_2)$ produced would immediately revert to $Os_3(CO)_{12}$ at the high [CO] used. Concerted displacement of two CO ligands seems unlikely. On the other hand, $Os_2(CO)_8(\mu-\eta^1,\eta^1-alkene)$ and $Os(CO)_4(\eta^2-alkene)$ are known²⁴ products of photolysis of $Os_3(CO)_{12}$ with alkenes, and it is perfectly possible that alkyne analogues could be formed as initial products of the thermal reactions. How they subsequently react to form the final products is not shown by the kinetic data. Although not very precise, the activation parameters (Table III) for the minor path governed by k_{A2} suggest that the bonding within the $Os_3(CO)_{12}$ has been greatly weakened in forming the Os_3 - $(CO)_{12} \cdot C_2 Ph_2$ transition state.

The least important path, governed by k_{A1} , is not easy to characterize mechanistically. It cannot be caused by reaction with impurities specifically in the decalin because a small intercept is also shown by reactions in tetradecane under 100% CO at 190 °C. It is conceivable that it involves an initial rate-determining isomerization of $Os_3(CO)_{12}$, as in eq 6, to a form that can very readily be attacked by C_2Ph_2 (eq 7). Photolysis of $Os_3(CO)_{12}$

$$Os_3(CO)_{12} \xrightarrow{\kappa_{A1}} Os_3(CO)_{12}^*$$
 (6)

$$Os_3(CO)_{12}^* + C_2Ph_2 \xrightarrow{\text{fast}} \text{fragmentation}$$
 (7)

produces a reactive isomer that undergoes bimolecular fragmentation on attack by alkenes.²⁵ However, the absence of any substantial dependence of k_{A1} on temperature is surprising, and the mechanism of this relatively minor path remains in doubt.

Reaction of Os_3(CO)_{10}(C_2Ph_2). Reactions with C_2Ph_2 under N_2 at 80-95 °C were accompanied by the growth of bands (Table I) due to $Os_3(CO)_9(C_4Ph_4)$, and these were subsequently replaced by bands due to $Os_3(CO)_8(C_4Ph_4)$. In the presence of CO, only bands due to the former complex were observed to grow, and they subsequently disappeared and were replaced by bands due to $Os_2(CO)_6(C_4Ph_4)$ together with weak bands assignable²⁶ to Os-(CO)₅. No bands due to $Os_3(CO)_{12}$ were observed during or after these latter reactions. $Os_3(CO)_{10}(C_2Ph_2)$ is found to convert to $Os_3(CO)_{12}$ only in the absence of C_2Ph_2 and under CO at temperatures above ca. 125 °C. The values of k_{obsd} (Table V) for loss of $Os_3(CO)_{10}(C_2Ph_2)$ at 85 °C were found to depend on [CO] and $[C_2Ph_2]$ according to eq 8. This is identical in form with

$$1/k_{\rm obsd} = c + d[\rm CO]/[\rm C_2Ph_2]$$
(8)

Table V. Rate Data for Reaction of $Os_3(CO)_{10}(\mu-C_2Ph_2)$ with C_2Ph_2 in Decalin^a

<i>T</i> , °C	$[C_2Ph_2], M$	10 ⁴ [CO], M	$10^4 k_{\rm obsd}, {\rm s}^{-1}$
80.0	0.064	0 ^b	3.40
85.0	0.011	2.73	0.78
85.0	0.022	2.73	1.25
85.0	0.064	0 ^{<i>b</i>}	5.70
85.0	0.064	2.73	3.10
85.0	0.064	13.7	0.83
85.0	0.064	21.8	0.46
90.0	0.064	0 ^{<i>b</i>}	10.0
95.0	0.064	0 ^b	18.0
At 85 °C:	$c = 1627 \pm 112$	d = (4.85)	± 0.52) × 10 ⁵ s

"The parameters c and d are defined in eq 8. "Reactions under N_2 . Other reactions were carried out under CO-N2 mixtures of known composition.

eq 2, and values of c and d are shown in Table V. The temperature dependence of values of k_{obsd} under N₂ gave the activation parameters in Table IV.

This reaction can be concluded to proceed via the steps shown in eq 9-11. Reactions 9 and 10 represent a simple, slow, CO dissociative substitution reaction, and reaction 11 involves combination of the two differently bonded C₂Ph₂ moieties in Os₃- $(CO)_9(\mu$ -C₂Ph₂) $(\eta^2$ -C₂Ph₂) to form the osmacyclopentadiene product II. The scheme implies that $c = 1/k_9$ and $d/c = k_{-9}/k_{10}$.

$$Os_3(CO)_{10}(\mu-C_2Ph_2) \xrightarrow{k_9} Os_3(CO)_9(\mu-C_2Ph_2) + CO$$
 (9)

$$Os_{3}(CO)_{9}(\mu-C_{2}Ph_{2}) + C_{2}Ph_{2} \xrightarrow{\kappa_{10}} Os_{3}(CO)_{9}(\mu-C_{2}Ph_{2})(\eta^{2}-C_{2}Ph_{2})$$
(10)

$$Os_3(CO)_9(\mu - C_2Ph_2)(\eta^2 - C_2Ph_2) \xrightarrow{fast} Os_3(CO)_9(\mu - C_4Ph_4)$$
(11)

This is confirmed by measurements of the rates of reaction 12.28 These are independent of [PPh₃] and are governed by a first-order rate constant of $(7.23 \pm 0.16) \times 10^{-4} \text{ s}^{-1}$ at 85 °C which is in close

$$Os_3(CO)_{10}(\mu-C_2Ph_2) + PPh_3 \rightarrow Os_3(CO)_9(PPh_3)(\mu-C_2Ph_2) + CO (12)$$

agreement with the corresponding value of 1/c ((6.15 ± 0.30) $\times 10^{-4}$ s⁻¹). The complex Os₃(CO)₉(μ -C₂Ph₂)(η ²-C₂Ph₂) has been postulated to be formed in solution via the very reactive intermediate, $Os_3(CO)_9(\mu$ - $C_2Ph_2)$, and to isomerize to $Os_3(CO)_9(\mu$ - $C_4Ph_4)$ on "slight warming".⁵ The values of k_{obsd} found under N_2 can, therefore, be equated with values of k_9 , so the values of $\Delta \tilde{H}^*$ and ΔS^* in Table IV can be assigned to ΔH_9^* and ΔS_9^* .

The dissociation of CO from $Os_3(CO)_{10}(\mu-C_2Ph_2)$ is ca. 4 × 10³ times faster than from $Os_3(CO)_{11}(\eta^2 - C_2Ph_2)$ at 125 °C (Table IV), so the bridging alkyne is a highly labilizing ligand compared with the terminal one. This suggests that the CO is probably not lost from the Os(CO)₃ moiety that is π -bonded to the C=C bond in I but that it is lost from one of the Os atoms that are σ bonded to the C=C unit. Metal-C σ bonds are known to be quite labilizing.²⁹ The loss is more likely to occur from the Os(CO)₄ moiety because this could be compensated for by formation of an Os=Os double bond and this would account for the rather low value of ΔS^* . This could also explain why attack on the Os₃- $(CO)_9(\mu$ - $C_2Ph_2)$ intermediate by C_2Ph_2 is ca. 300 times slower than by CO,30 the intermediate being coordinated to six other atoms and sterically very inaccessible to a rather large ligand like C_2Ph_2 . It is interesting that the coupling of the two C_2Ph_2 units in $Os_3(CO)_9(\mu-C_2Ph_2)(\eta^2-C_2Ph_2)$ is such a fast reaction.

Reaction of Os_3(CO)_9(C_4Ph_4). Reaction of this complex, at room temperature and above, and in the presence of CO and C_2Ph_2 , leads to the growth of IR bands due to $Os_2(CO)_6(C_4Ph_4)$ (Table I) and Os(CO)₅.²⁶ Even at room temperature, the bands

⁽²³⁾ Candlin, J. P.; Shortland, A. C. J. Organomet. Chem. 1969, 16, 289-299. Poe, A. J.; Twigg, M. V. J. Chem. Soc., Dalton Trans. 1974, 1860-1866; Inorg. Chem. 1974, 13, 2982-2985. Karel, K. J.; Norton, J. R. J. Am. Chem. Soc. 1974, 96, 6812–6813. Sonneberger, D. C.; Atwood, J. D. Inorg. Chem. 1981, 20, 3243–3246. Stuntz, G. F.; Shapley, J. R. J. Organomet. Chem. 1981, 213, 389–403. Darensbourg, D. G.; Peterson, B. S.; Schmidt, R. E. Organometallics 1982, 1, 306–311. Sonneberger, D. C.; twood, J. D. J. Am. Chem. Soc. 1982, 104, 2113-2116; Organometallics

<sup>Atwood, J. D. J. Am. Chem. Soc. 1982, 104, 2113-2116; Organometallics 1982, 1, 694-698.
(24) Burke, M. R.; Takats, J.; Grevels, F.-W.; Reuvers, J. G. A. J. Am. Chem. Soc. 1983, 105, 4092-4093.
(25) Poë, A. J.; Sekhar, C. V. J. Am. Chem. Soc. 1986, 108, 3673-3679.
(26) νCO: 2034 and 1989 cm⁻¹. Cf. ref 27.
(27) Rushman, R.; Van Buuren, G. N.; Shiralian, M.; Pomeroy, R. N. Organometallics 1983, 2, 693-694.</sup>

⁽²⁸⁾ Poë, A. J.; Siegel, A., unpublished observations.

⁽²⁹⁾ Howell, J. A. S.; Burkinshaw, P. M. Chem. Rev. 1983, 83, 557-599.

⁽³⁰⁾ This ratio is given by k_{10}/k_{-9} , i.e., c/d in Table V.

Table VI. Rate Data for Reaction of $Os_3(CO)_9(\mu-C_4Ph_4)$ with CO in Decalin

<i>Т</i> , °С	$[C_2Ph_2], M$	10 ³ [CO], M	$10^4 k_{\rm obsd}, {\rm s}^{-1}$	k _{obsd} / [CO], M ⁻¹ s ⁻¹
50.0	0.064	0.86	4.4	0.51
50.0	0.064	1.44	6.42 ^a	0.45
50.0	0.005-0.100	2.30	7.96 ^b	0.35
50.0	0.064	4.08	15.6	0.38
50.0	0.064	5.75	22.0	0.38
55.0	0.064	2.28	10.0	0.44
60.0	0.050	2.26	12.0	0.53
65.0	0.050	2.24	15.0	0.67
70.0	0.050	2.22	20.0	0.90

 $\Delta H^* = 8.20 \pm 1.28 \text{ kcal mol}^{-1} \text{ c}$ $\Delta S^* = -35.3 \pm 3.9 \text{ cal } \text{K}^{-1} \text{ mol}^{-1} \text{ c}$

^a Mean of five values with initial values of [complex] varied from 1 $\times 10^{-4}$ to 7 $\times 10^{-4}$ M. ^b Mean of five values. ^c Activation parameters from the dependence of ln ($k_{obsd}/[CO]T$) on 1/T.

Table VII. Activation Parameters for Bimolecular Reaction of CO with Some Metal Carbonyl Clusters

cluster	ΔH^* , kcal mol ⁻¹	ΔS^* , cal K ⁻¹ mol ⁻¹
$Os_3(CO)_9(\mu - C_4Ph_4)$	8.2 ± 1.3	-35.3 ± 3.9
$H_2Ru_4(CO)_{13}^{a}$	12.5 ± 0.5	-36.6 ± 1.6
$H_2FeRu_3(CO)_{13}^a$	20.0 ± 2.0	-25.4 ± 5.8

^a Reference 32.

due to Os(CO)₅ eventually disappear, leaving Os₂(CO)₆(C₄Ph₄) as the only product, its IR bands increasing in intensity as those due to Os(CO)₅ decrease. Reaction of Os₃(CO)₉(C₄Ph₄) with PPh₃ at room temperature was found to lead to Os₂(CO)₆(C₄Ph₄) and Os(CO)₄(PPh₃). The kinetics of reaction with CO were followed at 50–70 °C and values of k_{obsd} found to be independent of the concentrations of reacting complex or C₂Ph₂ but linearly dependent on [CO] (Table VI). The mean value of $k_{obsd}/[CO]$ at 50.0 °C is 0.41 ± 0.04 M⁻¹ s⁻¹. Activation parameters for this second-order fragmentation reaction are also shown in Table VI.

The absence of any dependence on [complex] precludes spontaneous reversible fragmentation into $Os_2(CO)_5(\mu-C_4Ph_4)$ and $Os(CO)_4$ followed by weakly competing addition of CO. Such a process would be half order in $[Os_3(CO)_9(\mu-C_4Ph_4)]$.³¹ Fragmentation most probably occurs by F_N2 attack^{17,19} by CO at the Os(CO)_4 moiety since reaction with PPh₃ leads to Os-(CO)_4(PPh_3) very much more rapidly in accord with the much higher nucleophilicity of PPh₃. It is interesting that the Os(CO)_5 product appears to react with C_2Ph_2 , under these mild conditions, to form $Os_2(CO)_6(\mu-C_4Ph_4)$.

The activation parameters are typical of other bimolecular reactions of carbonyl clusters.²³ Activation parameters for the

bimolecular reaction of CO with H₂Ru₄(CO)₁₃ and H₂FeRu₃(C- O_{13}^{32} are compared with those of $O_{s_3}(CO)_9(\mu-C_4Ph_4)$ in Table VII. The former reactions lead to fragmentation, formation of Ru(CO)₅ and Fe(CO)₅ resulting from nucleophilic attack at an $M(CO)_4$ moiety. However, these reactions are believed to go via initial formation of a "butterfly" cluster $H_2M_4(CO)_{14}$ which subsequently undergoes fragmentation, probably via further CO attack. Immediate fragmentation after attack by the first CO is unlikely because of the highly unsaturated nature of the residual $H_2M_3(CO)_9$ that would be formed in addition to $M(CO)_5$. The case of $Os_3(CO)_9(\mu - C_4Ph_4)$ is quite different in that a very small change in the bonding of the osmacyclopentadiene ring is expected and the two single Os-Os bonds to the displaced Os(CO)₄ group can be replaced smoothly by formation of an Os=Os double bond in the remaining $Os_2(CO)_5(\mu-C_4Ph_4)$. This species would be in accord with the 18-electron rule but, being unsaturated, would be expected to react rapidly with another CO to form Os₂- $(CO)_6(\mu$ -C₄Ph₄). The much lower value of ΔH^* for fragmentation of the Os₃ cluster can then be readily understood.

Summary. This kinetic study has revealed the mechanistic and energetic details of how a simple binary carbonyl cluster can react sequentially with an alkyne to form a series of derivatives. The initial reaction of the cluster proceeds via two main mechanisms: one involving a labile substitutional preequilibrium; the other an unexpected and unique bimolecular attack by the alkyne that leads directly to fragmentation.

Intermediate complexes formed by substitution reactions can react via CO dissociative paths. In one of these the loss of CO is assisted by a concerted rearrangement of a two-electron donor alkyne to a four-electron donor form. In the other, a simple reversible CO dissociation is accelerated by the presence of Os—C σ bonds and assisted by formation of an Os—Os double bond. Finally, an organometallic Os₃ derivative undergoes nucleophilic (F_N2) attack by CO during which an Os(CO)₄ moiety is selectivity and cleanly removed from the cluster in a very low energy process. It remains to be seen how general this mechanistic diversity is, but is seems to us to be most probably a characteristic feature of such reactions.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support. One of us (C.N.S.) thanks the C.S.I.R (Pretoria) for a postdoctoral fellowship.

Registry No. Os₃(CO)₁₂, 15696-40-9; C₂Ph₂, 501-65-5.

Supplementary Material Available: Tables of kinetic data of reactions of $Os_3(CO)_{12}$ with C_2Ph_2 in decalin (3 pages). Ordering information is given on any current masthead page.

⁽³¹⁾ Poë, A. J. Chem. Br. 1983, 19, 997-998, 1001-1003.

⁽³²⁾ Fox, J. R.; Gladfelter, W. L.; Geoffroy, G. L. Inorg. Chem. 1980, 19, 2574-2578.